Pada postingan sebelumnya tentang cara menentukan gradien garis yang melalui dua titik, telah disinggung bahwa gradien garis yang melalui titik (x1, y1) dan (x2, y2) dapat dirumuskan dengan m = (y2 – y1)/(x2 – x1). Sekarang bagaimana cara menentukan persamaan garis yang melalui dua titik (x1, y1) dan (x2, y2)?
Untuk memudahkan Anda dalam menentukan persamaan garis yang melalui dua titik (x1, y1) dan (x2, y2), silahkan perhatikan gambar di bawah ini.
Gambar di atas merupakan sebuah garis l, di mana garis tersebut melalui titik A(x1, y1) dan titik B(x2, y2). Karena gradien garis yang melalui titik (x1, y1) dan (x2, y2) dapat dirumuskan dengan m = (y2 – y1)/(x2 – x1), maka persamaan garis yang melalui titik A(x1, y1) yakni:
y – y1 = m(x – x1)
y – y1 = ((y2 – y1)/(x2 – x1))(x – x1) atau
(y – y1)(x2 – x1) = (y2 – y1)(x – x1)
Sedangkan persamaan garis yang melalui titik B(x2, y2) yakni:
y – y2 = m(x – x2)
y – y2 = ((y2 – y1)/(x2 – x1))(x – x2) atau
(y – y2)(x2 – x1) = (y2 – y1)(x – x2)
Rumus persamaan garis (y – y1)(x2 – x1) = (y2 – y1)(x – x1) dan (y – y2)(x2 – x1) = (y2 – y1)(x – x2) akan menghasilkan persamaan yang sama. Oke sekarang kita buktikan hal tersebut dengan contoh soal di bawah ini.
Contoh Soal 1
Tentukan persamaan garis yang melalui titik A(3, –5) dan B(–2, –3).
Penyelesaian:
Kita harus mencari gradien garis yang melalui titik A(3, –5) dan B(–2, –3) dengan rumus:
<=> m = (yB – yA)/(xB – xA)
<=> m = (–3 – (–5))/( –2 – 3)
<=> m = 2/–5
<=> m = –2/5
Persamaan garis yang melalui titik A(3, –5) dengan gradien –2/5 adalah:
<=> y – yA = m(x – xA)
<=> y – (–5) = (–2/5)(x – 3)
<=> y + 5 = (–2/5)(x – 3)
<=> (y + 5).5 = (–2/5)(x – 3).5 <= kedua ruas dikali 5
<=> 5y + 25 = –2x + 6
<=> 5y = –2x + 6 – 25
<=> 5y = –2x – 19
Persamaan garis yang melalui titik B(–2, –3) dengan gradien –2/5 adalah:
<=> y – yB = m(x – xB)
<=> y – (–3) = (–2/5)(x – (–2))
<=> y + 3 = (–2/5)(x + 2)
<=> (y + 3).5 = (–2/5)(x + 2).5 <= kedua ruas dikali 5
<=> 5y + 15 = –2x – 4
<=> 5y = –2x – 4 – 15
<=> 5y = –2x – 19
Ternyata titik manapun yang disubstitusi akan menghasilkan persamaan garis yang sama.
Nah untuk memantapkan pemahaman Anda tentang cara menentukan persamaan garis yang melalui dua titik (x1, y1) dan (x2, y2), silahkan perhatikan contoh soal di bawah ini.
Contoh Soal 2
Tentukan persamaan garis yang melalui titik-titik berikut.
a. A(3, –2) dan B(–1, 3)
b. Q(–5, 0) dan R(3, 4)
c. K(7, 3) dan L(–2, –1)
d. M(1, 1) dan N(–6, 4)
Penyelesaian:
a. Untuk persamaan garis yang melalui titik A(3, –2) dan B(–1, 3)
<=> m = (yB – yA)/(xB – xA)
<=> m = (3 – (–2))/( –1 – 3)
<=> m = 5/–4
<=> m = –5/4
Persamaan garis yang melalui titik A(3, –2) dengan gradien –5/4 adalah:
<=> y – yA = m(x – xA)
<=> y – (–2) = (–5/4)(x – 3)
<=> y + 2 = (–5/4)(x – 3)
<=> (y + 2).4 = (–5/4)(x – 3).4 <= kedua ruas dikali 4
<=> 4y + 8 = –5x + 15
<=> 4y = –5x + 15 – 8
<=> 4y = –5x + 7
b. Untuk persamaan garis yang melalui titik Q(–5, 0) dan R(3, 4)
<=> m = (yR – yQ)/(xR – xQ)
<=> m = (4 – 0)/( 3 – (–5))
<=> m = 4/8
<=> m = ½
Persamaan garis yang melalui titik Q(–5, 0) dengan gradien ½ adalah:
<=> y – yQ = m(x – xQ)
<=> y – 0 = ½ (x – (–5))
<=> y = ½(x + 5)
<=> y.2 = ½(x + 5).2 <= kedua ruas dikali 2
<=> 2y = x + 5
c. Untuk persamaan garis yang melalui titik K(7, 3) dan L(–2, –1)
<=> m = (yL – yK)/(xL – xK)
<=> m = (–1 – 3)/( –2 – 7)
<=> m = –4/–9
<=> m = 4/9
Persamaan garis yang melalui titik K(7, 3) dengan gradien 4/9 adalah:
<=> y – yK = m(x – xK)
<=> y – 3 = (4/9)(x – 7)
<=> (y – 3).9 = (4/9)(x – 7).9 <= kedua ruas dikali 9
<=> 9y – 27 = 4x – 28
<=> 9y = 4x – 28 + 27
<=> 9y = 4x – 1
d. Untuk persamaan garis yang melalui titik M(1, 1) dan N(–6, 4)
<=> m = (yN – yM)/(xN – xM)
<=> m = (4 – 1)/( –6 – 1)
<=> m = 3/–7
<=> m = –3/7
Persamaan garis yang melalui titik M(1, 1) dengan gradien –3/7 adalah:
<=> y – yM = m(x – xM)
<=> y – 1 = (–3/7)(x – 1)
<=> (y – 1).7 = (–3/7)(x – 1).7 <= kedua ruas dikali 7
<=> 7y –7 = –3x + 3
<=> 7y = –3x + 3 + 7
<=> 7y = –3x + 10
0 komentar:
Posting Komentar